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ABSTRACT

Multimodal dialog system has attracted increasing attention from

both academia and industry over recent years. Although existing

methods have achieved some progress, they are still confronted

with challenges in the aspect of question understanding (i.e., user

intention comprehension). In this paper, we present a relational

graph-based context-aware question understanding scheme, which

enhances the user intention comprehension from local to global.

Specifically, we first utilize multiple attribute matrices as the guid-

ance information to fully exploit the product-related keywords

from each textual sentence, strengthening the local representation

of user intentions. Afterwards, we design a sparse graph attention

network to adaptively aggregate effective context information for

each utterance, completely understanding the user intentions from

a global perspective. Moreover, extensive experiments over a bench-

mark dataset show the superiority of our model compared with

several state-of-the-art baselines.
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Hi

I intend to see a few of your dark color culotte
in cotton that she would like, just like this one.

I don’t like the 2th result. Show me something 
similar to the 4th image.

To describe the second item, play up girly elements
correctly when you wear these black coloured …

Hello, how can i help you?

Absolutely. Got it. Showing in a minute.

Greeting

Greeting

Transition

Meaningless

Figure 1: Illustration of amultimodal dialog systembetween

a user and an agent, where 𝑢𝑖 represents the 𝑖-th utterance.
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1 INTRODUCTION

With the popularization of intelligent service robots, multimodal

dialog systems have attracted increasing research interest, due to

their significance in retail, travel, and other domains. Compared to

the traditional dialog systems that purely focus on the textual con-

versation between users and agents [9, 37], the multimodal dialog

systems allow users to express their intentions with complement

images. This not only greatly improves user experience but also

facilitates the agents to better understand the user intentions. As

illustrated in Figure 1, the user can easily express her preferred

“culottes” through a product image. Confronted with the diverse and

complex conversations, how to completely comprehend users’ ques-

tions and hence correspondingly give accurate system responses

becomes a crucial task in multimodal dialog systems, especially in

the retail domain.

Inspired by the astonishing success of deep learning techniques

in various multimedia analysis tasks [10, 20, 21, 27, 35, 36], several

deep learning basedmultimodal dialog systems have been presented

and demonstrated their advanced abilities. For instance, as the pio-

neering study, Saha et al. [25] released a multimodal dialog dataset

(MMD) in the retail domain, and designed a basic multimodal dialog

system via multimodal hierarchical encoder and decoder. In the

same year, Liao et al. [18] introduced a multimodal dialog system,
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Figure 2: Schematic illustration of our TREASURE model.

which incorporates the style-tips knowledge into the neural model

and adopts an Exclusive&Independent tree [17] to capture fine-

grained semantics in images. Nevertheless, this system ignores the

influence of the users’ attention to the products. To this end, Cui et

al. [6] proposed a user attention-guided multimodal dialog system.

It learns attribute-level representations of taxonomy-guided prod-

uct images through a hierarchical encoder. Regarding the diversity

of domain knowledge and system responses, Nie et al. [22] devel-

oped a model that generates different types of system responses for

user intentions in different modalities through adaptive decoders.

Although these aforementioned multimodal dialog systems have

achieved promising performance, they still show certain limita-

tions in the aspect of question understanding (i.e., user intention

comprehension). This is mainly for the following reasons: 1) Tex-

tual sentence modeling. These prior efforts [18, 22, 25] directly

feed the whole textual sentence of each utterance into an online

encoder (e.g., Long Short-Term Memory Network, referred to as

LSTM) to establish one feature vector for the entire sentence. How-

ever, simply treating a sentence holistically as one feature vector

may overlook the keywords with rich semantic cues. As such, they

may fail to emphasize the informative words, such as the attribute

words “dark”, “cotton”, and “culotte” of 𝑢3 in Figure 1, which are

significant to comprehend the user intentions. Therefore, it is cru-

cial to build a textual encoder to adaptively pay close attention to

the intention-related information from textual sentences. And 2)

Relational context modeling. Existing methods [6, 18, 22, 25]

commonly utilize recurrent neural network to encode the utterance

sequence, ignoring the complementary relationship between differ-

ent utterances and the inconsistency of their contributions to the

user intentions. As illustrated in Figure 1, each utterance has its

own context. For 𝑢5, compared with other utterances that contain

no effective information, such as 𝑢1 and 𝑢2, 𝑢3 and 𝑢4 play an im-

portant role in understanding 𝑢5 since both the textual information

in 𝑢3 and the visual information in 𝑢4 clarify the user requirements.

In this paper, the contextual information (e.g., 𝑢3 and 𝑢4) that is
important to understanding the question (e.g., 𝑢5) is defined as the

relational context. In light of this, it is essential to consider the

relational context of each utterance and adaptively reweigh their

contributions for precise user intention modeling.

To solve the above issues, we propose a relaTional gRaph-based

contExt-Aware queStion UndeRstanding schEme (TREASURE)

for multimodal dialog system. As shown in Figure 2, it organizes

the entire multimodal dialog into a full connected graph by treating

each utterance as a node, to dynamically and adaptively capture

relational context information for better question understanding.

Particularly, we first design a novel node initialization module by

considering the attribute matrices as the guidance information.

This enables our model to focus on attribute-related textual words,

enhancing the local representation of each node. Afterwards, to

effectively capture the relational context for each node, we design

a sparse graph attention network by simplifying the dense connec-

tions between nodes. It could adaptively aggregate few but crucial

node information to strengthen the global representation of each

node. Finally, based on the obtained powerful representation of the

question node (e.g., 𝑢5 in Figure 2), we adopt a response generator

to output the system responses. We have conducted extensive ex-

periments over a well-known benchmark dataset and the results

demonstrate the superiority of our proposed scheme. In addition,

we release our code1 to facilitate the research in this field.

The contributions of our work are three-fold:

• Wedevise a novel relational graph-based context-aware ques-

tion understanding model, i.e., TREASURE, for multimodal

dialog system. It jointly integrates textual sentence and rela-

tional context modeling into a unified framework.

• To enhance the local representation of each utterance, we de-

sign an attribute-enhanced textual encoder, which enforces

the model to adaptively focus on attribute-related keywords.

• To comprehend the user intentions completely, we build a

sparse graph attention network, which could strengthen the

global representation of the question utterance by aggregat-

ing few but crucial relational context information.

2 RELATEDWORK

2.1 Unimodal Dialog Systems

Traditional dialog systems merely involve textual modality data,

which can be roughly divided into two categories: open-domain [5,

14, 26, 40, 43] and task-oriented dialog systems [28, 29]. The former

1https://acmmmtreasure.wixsite.com/treasure.



commonly adopts retrieval-based or generation-based methods to

realize a wide range of conversations with users on a variety of top-

ics. Specifically, existing retrieval-based methods [39, 41–43] select

the optimal response of the current conversation from the reposi-

tory via building different response selection algorithms. Despite

the promising performance, they could only return responses from

the predefined corpus. To overcome this restraint, generation-based

methods [26, 34] are proposed. They can automatically generate

responses for questions based on the historical context, even if

these responses never appear in the corpus.

Different from the open-domain dialog systems, task-oriented

ones [5] are introduced to complete specific tasks in certain vertical

domains, such as navigation and ticket booking. Moreover, most of

them employ a typical pipeline [9, 11]. Concretely, they first utilize

a natural language understanding module to classify user inten-

tions. And then they adopt the dialog state tracker to determine the

user intentions and fill in the predefined slots. Afterwards, a policy

learning module is leveraged to generate the next action of the sys-

tem based on the state representation. Finally, the natural language

generation module would deliver system responses through prede-

fined templates or generation methods. Despite their effectiveness,

these methods suffer from several serious problems [18, 44], such

as error propagation and heavy dependence on components.

With the remarkable success of deep neural networks, several

end-to-end task-oriented dialog systems have been proposed re-

cently [16, 33]. Particularly, some dialog systems consider domain

knowledge to improve their performance [4, 37], and some intro-

duce deep reinforcement learning to strengthen the generative

dialog systems [7, 15, 19]. Nevertheless, all these methods only

consider the single modality information, ignoring the importance

of other modalities.

2.2 Multimodal Dialog Systems

With the increasing prevalence of portable computing devices and

promotion from social media platforms, massive amounts of mul-

timedia data (e.g., images) are generated daily. The textual dialog

systems have been insufficient to satisfy the diverse user intentions,

especially in the online shopping platforms. Thereby, multimodal

dialog systems have attracted extensive attention, which could flex-

ibly express the user intentions in different modalities [3]. However,

due to the lack of large-scale multimodal dialog datasets, researches

in this domain have been limited.

To this end, Saha et al. [25] constructed a benchmark dataset

MMD in the retail domain, which contains more than 150k conver-

sation sessions and a variety of domain knowledge. Along with the

dataset, they also proposed two basic tasks (i.e., text response gener-

ation and image response selection) and a basic multimodal hierar-

chical encoder-decoder model (MHRED), a precedent in the domain

of multimodal dialog. Later, considering the understanding of fine-

grained visual semantics and the application of domain knowledge,

Liao et al. [18] designed a knowledge-aware multimodal dialog

system (KMD). To be specific, they built an Exclusive&Independent

tree [17] to capture fine-grained semantics in images. Meanwhile,

they introduced style-tips knowledge into the model through the

memory network [38] and adopted deep reinforcement learning to

maximize the expected future reward. However, they only consid-

ered one type of domain knowledge and ignored the users’ attention

to the products. Therefore, Cui et al. [6] designed a user attention-

guided multimodal dialog system (UMD), which learns attribute-

level representations of taxonomy-guided product images through

a hierarchical encoder. Chauhan et al. [2] introduced an ordinal and

attribute aware multimodal dialog system (OAM), which employs

a novel position and attribute aware attention mechanism to learn

enhanced image representation in the text response generation

task. Considering the diversity of external knowledge and system

responses, Nie et al. [22] proposed a multimodal dialog system with

adaptive decoders (MAGIC). It can incorporate different forms of

domain knowledge for different intents through intention classifica-

tion, and generate general responses, knowledge-aware responses,

as well as multimodal responses through adaptive decoders. More-

over, combining with transformer [30], He et al. [13] advanced

a multimodal dialog system via capturing context-aware depen-

dencies of semantic elements (MATE). This model uses relevant

images and ordinal information in the dialog history to generate

context-aware responses in the text response generation task.

Most existing multimodal dialog systems merely focus on en-

hancing the representation of the image by considering product

attribute information, thoroughly overlooking the importance of

strengthening the comprehension of the textual information. Al-

though UMD utilizes Convolutional Neural Network (CNN) to ag-

gregate multiple word embeddings in the sentence, both its results

and interpretability are far from practicability. Furthermore, previ-

ous studies have not considered the relationship between different

utterances in the context of each utterance, and ignore the impor-

tance of the complementary information for the user intention

comprehension.

3 METHODOLOGY

This section details our proposed model TREASURE, which com-

prises three components: the node initialization module (Section

3.1), the relational context modeling module (Section 3.2), and the

response generator (Section 3.3), as shown in Figure 2. In this paper,

given a multimodal context U = {𝑢1, ..., 𝑢𝑡 , ..., 𝑢𝑁 }, where each ut-

terance 𝑢𝑡 consists of textual sentences or images with sentences2,

our TREASURE organizes U into a graph G by setting each utter-

ance as a node. In the node initialization module, we first encode the

visual and textual information of each utterance 𝑢𝑡 , and then fuse

them to obtain the initial node representation X𝑡 . Afterwards, we

leverage the relational context modeling module to construct the

relationship between nodes, outputting the enhanced question rep-

resentation vector c. Finally, we feed the vector c into the response

generator to generate the correct system responses.

3.1 Node Initialization Module

As each node 𝑢𝑡 consists of textual sentences or both textual sen-

tences and images, we introduce a novel node initialization module

to process the utterance information. As shown in Figure 3, it is

composed of three components: a textual encoder, a visual encoder,

and a fusion module. To be specific, the textual encoder and visual

encoder are respectively leveraged to encode the sentence and im-

age information in each utterance. As to the fusion module, it is

2Note that some utterances may not contain images. In such case, we only take the
textual information as the input of our node initialization module.



utilized to fuse multimodal features, obtaining the utterance repre-

sentation. To get a better understanding of our node initialization

module, in what follows, we will take the 𝑡-th node as an example

to successively elaborate the above three components.

3.1.1 Textual Encoder. For the textual information in the given

utterance 𝑢𝑡 , we utilize pre-trained GloVe [24] to extract word

embeddings W = [w1; . . . ;w𝐾 ] ∈ R𝐾×𝐷𝑤 , where 𝐾 denotes the

number of words in the textual sentence and 𝐷𝑤 represents the

dimension of word embeddings. As illustrated in Figure 1, attribute

information in the textual sentences is vital for understanding user

intentions and generating system responses. Therefore, how to

enforce the model adaptively pay more attention to the attribute-

related words becomes a significant issue.

To tackle this problem, we design a multi-attribute attention

mechanism. Concretely, for each attribute in the attribute set3 A,

we first build an attribute matrixM𝑎 = [m𝑎
1 ; . . . ;m

𝑎
𝐾𝑎

] ∈ R𝐾𝑎×𝐷𝑤

(𝑎 ∈ {1, 2, . . . , 𝐴}) to store word embeddings of its attribute values

(e.g., red and black in color attribute), where 𝐴 denotes the number

of attributes, 𝐾𝑎 represents the number of attribute values for the

𝑎-th attribute, and m𝑎
𝑗 ∈ R𝐷𝑤 is the word embedding of the 𝑗-th

attribute value of the 𝑎-th attribute4. Afterwards, for each word in

𝑢𝑡 , we calculate its relevance score with respect to each attribute

value of all attributes as follows,

𝛼𝑎𝑖,𝑗 = m𝑎
𝑗w

𝑇
𝑖 , (1)

where 𝛼𝑎𝑖,𝑗 (𝑖 ∈ {1, . . . , 𝐾}, 𝑗 ∈ {1, . . . , 𝐾𝑎}) denotes the relevance

score of the 𝑖-th utterance word in relation to the 𝑗-th value of the

𝑎-th attribute.

Based on the above-mentioned attention weights, a weighted

combination of all the attribute-values is created, with correlated

attribute-values to the word of high attention. Intuitively, a word-

value pair should have a high similarity score if the word embedding

has similar semantic to the attribute-value embedding. Then the

word-specific attribute-value representation ŵ𝑎
𝑖 ∈ R𝐷𝑤 with re-

spect to the 𝑎-th attribute is defined as follows,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ŵ𝑎
𝑖 =

∑𝐾𝑎
𝑗=1 𝛼

𝑎
𝑖,𝑗m

𝑎
𝑗 ,

𝛼𝑎𝑖,𝑗 =
exp (𝛼𝑎

𝑖,𝑗 )∑𝐾𝑎
𝑗=1 exp (𝛼𝑎

𝑖,𝑗 )
.

(2)

Therefore, for each word, we could obtain its word-specific

attribute-value representations in regard to𝐴 attributes, i.e., {ŵ1
𝑖 , . . . ,

ŵ𝐴
𝑖 }

𝐾
𝑖=1. To aggregate these representations, we adopt an attention

network as follows,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

w̄𝑖 =
∑𝐴
𝑎=1 𝛽

𝑎
𝑖 ŵ

𝑎
𝑖 ,

𝛽𝑎𝑖 =
exp (𝛽𝑎𝑖 )∑𝐴
𝑎=1 exp (𝛽𝑎𝑖 )

,

𝛽𝑎𝑖 = ŵ𝑎
𝑖 w

𝑇
𝑖 ,

(3)

where 𝛽𝑎𝑖 (𝑖 ∈ {1, . . . , 𝐾}, 𝑎 ∈ {1, . . . , 𝐴}) represents the relevance
score of the 𝑖-th word in relation to the 𝑎-th attribute and w̄𝑖 is the

3In this paper, we consider the top 5 frequent types of attributes, including “color”,
“gender”, “material”, “style”, and “type”.
4In our work, we merely select the attribute values that appear more than 100 times.
Therefore, the number of attribute values 𝐾𝑎 corresponding to the five attributes are
31, 4, 94, 31, and 111, respectively. For the convenience of computing, we pad the
number of values for each attribute to 120 with zero.
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Figure 3: Illustration of our proposed node initialization

module.

output representation that incorporates all attribute information

with respect to the 𝑖-th utterance word.

Thereafter, we utilize the short-cut mechanism to fuse w𝑖 and

w̄𝑖 , obtaining the attribute-enhanced word representation. Finally,

these powerful word representations are fed into a LSTM network,

and the final hidden state is set as the textual representation for the

utterance 𝑢𝑡 , denoted as h𝑢𝑡 .

3.1.2 Visual Encoder. As the old saying goes, “there are a thousand

Hamlets in a thousand people’s eyes”. Thereby, for the same product

image, users may focus on different aspects. To capture useful

visual information for response generation, we design a preference-

aware attention network. To be specific, we select the pre-trained

ResNet-18 [12] network without the final fully connected layer

as the backbone of our visual encoder. It takes the image 𝐼𝑡 from
the utterance 𝑢𝑡 as input and outputs the 𝑅 × 512 dimensional

feature map, where 𝑅 denotes the number of pixels in the feature

map. Thereafter, based on the user’s preference representation h𝑢𝑡
obtained from the textual encoder, we calculate the alignment score

between each visual region and the user’s preferences as follows,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝑠𝑖 =
𝑒𝑥𝑝 (𝑒𝑖 )∑𝑅
𝑗=1 𝑒𝑥𝑝 (𝑒 𝑗 )

,

𝑒𝑖 = 𝑓𝑎𝑡𝑡 (h𝑢𝑡 , v𝑖 ),

(4)

where v𝑖 ∈ R512 denotes the 𝑖-th pixel of the visual feature map

and 𝑓𝑎𝑡𝑡 denotes the attention network implemented by a 1-layer

perception. After obtaining these preference-aware attention scores,

the final visual representation h𝑣𝑡 of the utterance 𝑢𝑡 could be

obtained as follows,

h𝑣𝑡 =
𝑅∑
𝑖=1

𝑠𝑖v𝑖 . (5)

3.1.3 Fusion Layer. Thus far, we have obtained the textual embed-

ding h𝑢𝑡 and the visual embedding h𝑣𝑡 of the current utterance 𝑢𝑡 .
We hence can derive a cross-modal representation for the current

utterance by employing the concatenation operator as follows,

X𝑡 = h𝑢𝑡 ⊕ h𝑣𝑡 , (6)

where ⊕ represents the concatenation operation and X𝑡 denotes

the initial representation of the current node 𝑢𝑡 .

3.2 Relational Context Modeling Module

As illustrated in Figure 1, different utterances contain inconsistent

effective information, and their ability to describe user intentions is

different. For instance, the initial utterance is usually on greetings.
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lationship update strategy (N=5).

Some middle utterances are transitional sentences, such as “Abso-

lutely. Got it. Showing in a minute.”, containing less information

related to the user intentions. Besides, some utterances express

the preferences of the user in detail, e.g., “... dark color culotte

in cotton...”. Therefore, in the context modeling, we should high-

light the utterances with meaningful information, while restrain

the meaningless ones. Moreover, the dialog context information

is not entirely independent, therefore, how to adequately model

the relationship between them for importance evaluation is also a

concern.

To this end, we propose a sparse graph attention network by

extending the graph attention network (GAT) [31]. GAT iteratively

updates the representation of each node (e.g., the utterance repre-

sentation) by aggregating representations of the neighbor nodes via

multi-head attention. Therefore, GAT could assign small even zero

attention score to the irrelevant node. However, the normalization

process implemented by Softmax would magnify these smaller val-

ues, which may lead to negative influence to the context encoding,

further affecting the accuracy of response generation. To address

this issue, we propose to extend the original GAT with sparse adja-

cency matrix update. We dynamically delete some connecting edges

to ensure each node merely links to the closely related ones. Specif-

ically, at the initialization, we define a adjacency matrix whose

elements are all ones. In each iteration layer, the values in the ad-

jacency matrix will be updated according to attention coefficients.

To enforce each node to pay attention to the relevant nodes and

avoid the interference of unimportant information, we only retain

edges of the top-𝑘 neighbor nodes. More concretely, the value of 𝑘
is calculated as follows,

𝑘 = [𝑡/2] + 1, (7)

where 𝑡 is the index number of the 𝑡-th node, and [·] is the round-

ing function. Note that in each layer, multiple adjacency matrices

obtained by different attention heads would be aggregated into one

matrix through the majoritarian voting mechanism, as the adja-

cency matrix of the next iteration layer. In other words, at each

location of the output adjacency matrix, its value is decided by a

majority of values in the corresponding position of input matrices.

As shown in Figure 4, the original connection relationship be-

tween nodes is relatively dense, while our sparse update strategy

largely simplifies the connection relationship, where each node

is only connected to the nodes that are closely related to it. This

makes it easier for each node to aggregate effective information

from other nodes. In this paper, we utilize N̄𝑡 to represent the top-𝑘
neighbor nodes of the node 𝑡 . Thereby, the update process of our
sparse GAT can be formulated as follows,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X𝑙+1
𝑡 = | |

𝐾𝑏

𝑘=1 (Φ(
∑
𝑠∈N̄𝑡

𝑟 𝑙𝑘𝑡,𝑠W
𝑙
𝑘
X𝑙
𝑠 )),

𝑟 𝑙𝑘𝑡,𝑠 =
𝑒𝑥𝑝 (𝜙 (𝜸𝑇

𝑙
(W𝑙

𝑘
X𝑙
𝑡 ⊕ W𝑙

𝑘
X𝑙
𝑠 )))∑

𝑚∈N̄𝑡
𝑒𝑥𝑝 (𝜙 (𝜸𝑇

𝑙
(W𝑙

𝑘
X𝑡 ⊕ W𝑙

𝑘
𝑋𝑚)))

,
(8)

where 𝜸𝑙 andW𝑙
𝑘
are respectively the trainable parameter vector

and matrix of the 𝑙-th layer,𝜙 and Φ are respectively the LeakyReLU

and Exponential Linear Unit (ELU) activation functions, 𝐾𝑏 rep-

resents the number of attention heads, | |𝐾
𝑘=1x𝑘 denotes the con-

catenation of vectors from x1 to x𝐾 , 𝑟
𝑙𝑘
𝑡,𝑠 is a normalized attention

coefficient computed by the 𝑘-th attention head at layer 𝑙 , and X𝑙+1
𝑡

denotes the updated 𝑡-th node representation at layer 𝑙 + 1.

After the 𝐿 layers propagation5, we obtain the final representa-

tion for each utterance, i.e., X𝐿
𝑡 . To obtain the final question rep-

resentation c, we first concatenate the original feature of the last

node (i.e., the question utterance) X𝑁 and the updated one X𝐿
𝑁 , and

then feed it into a fully connected layer.

3.3 Response Generator

To verify the effectiveness of our question representation, we apply

it to the image response selection task and design a response gener-

ator [22]. Note that our question representation can also be utilized

for text response generation, which would be demonstrated in the

section 4.4.2. Considering that attribute information could depict

the characteristics of products, we integrate it with the visual infor-

mation to enhance the representations of the candidate products.

Specifically, we treat attributes of the candidates as their textual

information6, and then feed it along with their visual information

into our node initialization module, outputting the representations

of candidate products. Afterwards, we calculate the cosine simi-

larity between the question vector (i.e., the representation of user

intentions) and the features of the candidates. Finally, the candidates

with the higher similarity scores are returned as image responses.

In this work, we use the max-margin loss function to optimize

the model, which is formulated as follows,

𝑙𝑜𝑠𝑠 =𝑚𝑎𝑥 (0, 1 − 𝑐𝑜𝑠 (c, y𝑝𝑜𝑠 ) + 𝑐𝑜𝑠 (c, y𝑛𝑒𝑔)), (9)

where y𝑝𝑜𝑠 and y𝑛𝑒𝑔 denote the representations of the positive and

negative products, respectively, and the function 𝑐𝑜𝑠 (x, y) refers to
the cosine similarity between x and y.

4 EXPERIMENTS

4.1 Dataset

In this paper, we conducted experiments on the widely-used bench-

mark dataset MMD constructed by Saha et al. [25], to evaluate our

proposed model with several state-of-the-art baselines. The MMD

5In this paper, we follow the settings in [31], i.e., the last layer uses single-head attention
and removes the ELU activation function.
6We first arrange the attribute in the alphabetical order, and then concatenate each
attribute and its values sequentially, constructing the input textual information.



Table 1: Performance comparison between our proposed model and several state-of-the-art baselines on the MMD dataset in

the image response selection task. The best performance is highlighted in bold.

Methods Precision@5 Recall@5 NDCG@5 Precision@10 Recall@10 NDCG@10 Precision@20 Recall@20 NDCG@20

MHRED 0.1623 0.1787 0.2286 0.1240 0.2582 0.2766 0.0922 0.4583 0.3315

UMD 0.3431 0.3999 0.4019 0.1982 0.4629 0.4297 0.1169 0.5492 0.4596

MAGIC 0.5446 0.6589 0.6639 0.2990 0.7127 0.6841 0.1580 0.7549 0.6979

TREASURE 0.5987 0.7139 0.7124 0.3134 0.7485 0.7272 0.1633 0.7817 0.7387

Table 2: Performance comparison among the variants of our proposed model in the image response selection task. The best

results are highlighted in bold.

Methods Precision@5 Recall@5 NDCG@5 Precision@10 Recall@10 NDCG@10 Precision@20 Recall@20 NDCG@20

TREASURE 0.5987 0.7139 0.7124 0.3134 0.7485 0.7272 0.1633 0.7817 0.7387

w/o Attribute 0.5799 0.6918 0.6817 0.3064 0.7318 0.6989 0.1606 0.7687 0.7118

w/o Graph 0.5823 0.6944 0.6839 0.3062 0.7308 0.6998 0.1602 0.7662 0.7121

w/o Sparsity 0.5899 0.7042 0.7030 0.3115 0.7445 0.7204 0.1629 0.7800 0.7327

dataset contains more than 150k conversations between users and

agents in the retail domain, where each conversation describes a

complete online shopping process with approximately 40 utterances.

During the conversation, the user proposes his/her intentions in

multimodal utterances and the agent introduces different products

step by step until they make a deal. Moreover, more than 1 million

fashion products with a variety of domain knowledge are crawled

from several well-known online retailing websites, such as Ama-

zon7, Jabong8, and Abof9. Meanwhile, Saha et al. [25] proposed two

research tasks: the text response generation and the image response

selection. The former is designed to generate text responses based

on the question representation, while the latter aims to retrieve and

sort candidate images based on the relevance between the question

representation and the product vectors. In this paper, we mainly

evaluated our model in the image response selection task.

4.2 Experimental Settings

4.2.1 Implementation Details. We optimized our proposed model

on 1 GeForce RTX 2080 Ti GPU using PyTorch library. The Adam

optimizer [1] is employed with a mini-batch size 64 and 12 epochs.

The learning rate is set as 0.0001. Moreover, the dimension of the

word embedding𝐷𝑤 is 300, the number of visual regions𝑅 is 49, and

the dimension of question representation c is set to 2048. Besides,

the utterance number 𝑁 in the context is 10, the layer number 𝐿
of our sparse GAT is 2, and the number of attention heads 𝐾𝑏 is 3.

As for the ratio of positive and negative products10, we set it to 1:4

and 5:1000 for training and testing, respectively.

4.2.2 Evaluation Metrics. Following the existing baseline [25], we

adopted Recall@𝑘 , Precision@𝑘 , and NDCG@𝑘 (𝑘= 5, 10, and 20),

as the evaluation metrics in the image response selection task. To

be specific, Recall@𝑘 is the proportion of relevant products found

in the top-𝑘 results. Precision@𝑘 is the proportion of selected prod-

ucts in the top-𝑘 set that are relevant. NDCG@𝑘 is an evaluation

criterion tomeasure the ranking results, which is the ratio of the cor-

responding Discounted Cumulative Gain (DCG) to Ideal Discounted

Cumulative Gain (IDCG). And in the text response generation task,

7https://www.amazon.com/.
8https://www.jabong.com/.
9https://www.abof.com/.
10We appropriately expanded the number of negative products for each group of
positive ones to 1k according to the matching relationship between product attributes
and dialog retrieval requirements, increasing the difficulty of image retrieval.

we utilized BLEU-𝑚 [23] (𝑚 varies from 1 to 4) and NIST [8] to

measure the similarity between the predicted and target responses.

4.3 Performance Comparison

To justify the effectiveness of our proposed TREASURE model,

we compared it with the following state-of-the-art baselines of

releasing the codes in the image response selection task.

• MHRED [25] : This is the first work on a multimodal task-

oriented dialog system in the retail domain. It incorporates vi-

sual features into the hierarchical recurrent encoder-decoder

model [32] to form the multimodal hierarchical encoder-

decoder model, achieving impressive performance.

• UMD [6] : It is a user attention-guided multimodal dialog sys-

tem built on top of MHRED, which jointly considers hierar-

chical product taxonomy and the user’s attention to products.

In particular, it designs an attention mechanism that lever-

ages textual features and multiple features extracted from

the taxonomy-attribute tree to extract visual features.

• MAGIC [22] : This is currently the strongest baseline on the

MMD dataset in the image response selection task. It incor-

porates a variety of domain knowledge and presents adaptive

decoders, to dynamically generate different responses.

Note that the results of these baselines are obtained utilizing

the codes provided in their original papers. For fair comparison, all

baselines and ourmodel adopt the same experimental setup (e.g., the

ratio of positive and negative products). The comparison results are

summarized in Table 1. By analyzing the results, we found that our

proposed model TREASURE outperforms the compared baselines

regarding all metrics with different depths. For instance, compared

with the state-of-the-art baseline MAGIC, our approach obtains rel-

ative Recall@5, Precision@5, and NDCG@5 with 9.92%, 8.34%, and

7.32% gains, respectively. Moreover, it separately achieves improve-

ment with nearly 31.05% and 48.38% NDCG@5 gains as compared

to UMD and MHRED. The improvement indicates that 1) the feasi-

bility and importance of highlighting attribute-aware keywords in

the textual sentences; and 2) the remarkable ability of our sparse

GAT module. Specifically, the former could enhance the local rep-

resentation of each multimodal utterance, while the latter could

capture relational utterances to promote the global comprehension

of user intentions. Therefore, our model could deliver more precise

system responses to users.



Table 3: The performance of UMD-based variants in the

text response generation task. The best performance is high-

lighted in bold.

Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 NIST

UMD 0.3470 0.2620 0.2108 0.1735 2.7566

UMD+TE 0.3944 0.3061 0.2504 0.2079 3.2942

UMD+TE+CE 0.4457 0.3581 0.3034 0.2612 4.1110

4.4 Ablation Study

4.4.1 Image Response Selection Task. We studied variants of our

model to further investigate the effectiveness of the multi-attribute

attention and the sparse GAT in the image response selection task:

• w/o Attribute: We eliminated the multi-attribute attention

module from the textual encoder. That is, we directly utilized

the LSTM to encode the word sequence, same as MAGIC.

• w/o Graph: We removed sparse GAT module from the rela-

tional context modeling module. In other words, following

the same settings as other baseline methods, we directly ap-

plied LSTM to encode utterance sequence and treated the

final hidden state as the question representation.

• w/o Sparsity: Instead of using sparse adjacency matrix up-

date strategy, we adopted the original GAT with fully con-

nected node relationship.

As reported in Table 2, compared with our model, the perfor-

mance of w/o Attribute degrades dramatically. Particularly, it

drops absolutely by 1.88%, 2.21%, and 3.07% on Precision@5, Re-

call@5, and NDCG@5, respectively. This demonstrates the vital

importance of the multi-attribute attention as it can capture cru-

cial attribute information related to the products from the given

utterances. Besides, our model achieves better results than w/o

Graph, indicating that adaptively considering relational context in-

formation of each utterance is beneficial to strengthen the complete

comprehension of the user intentions. Moreover, the performance

of w/o Sparsity drops, reflecting that it is crucial to filter useful

relational context information from dense connections to enhance

the global representation of each utterance. In general, our pro-

posed model largely exceeds all variants, verifying the effectiveness

of multi-attribute attention as well as the sparse GAT.

4.4.2 Text Response Generation Task. We also verified the effective-

ness of our model in the text response generation task. Particularly,

we selected the UMD [6] that focuses on question understanding

as our baseline and set the following variants:

• UMD+TE: We replaced the textual encoder in UMD with

our multi-attribute attention guided textual encoder.

• UMD+TE+CE: We replaced the whole question understand-

ing module of UMD with our network.

From the experimental results summarized in Table 3, we can

see that UMD+TE surpasses the baseline UMD in all evaluation

metrics. Particularly, it has achieved 19.83% and 19.50% relative

gains over UMD on BLEU-4 and NIST, respectively. This fully in-

dicates that our multi-attribute attention based textual encoder

could enhance the comprehension of user’s questions, therefore

improving the generation accuracy of text responses. In addition,

UMD+TE+CE achieves superior performance with competitive

results to UMD+TE. This reflects that adaptively capturing pivotal

relational context information through sparse GAT for each node

Figure 5: Visualization of the aggregation attention in

Eqn. (3). The attribute attention is presented with different

colors, and the darker color states the higher value.

is conducive to understanding global user intentions and generat-

ing the correct text responses. The results reported in Table 2 and

Table 3 adequately demonstrate the effectiveness of our question

understanding model in both the image response selection and the

text response generation tasks.

4.5 Attention Visualization

4.5.1 Visualization of Attribute Attention. Apart from achieving

the superior performance, one of the key advantages of TREASURE

over other methods is that its multi-attribute attention module is

able to distinguish the most relevant attributes to the products.

Towards this end, we illustrated five textual sentences describing

different product intentions of users, i.e., from Text a to Text e, and

then visualized their attention values over five attributes11.

• Text a : “I would love to see jeans that would suit me.”

• Text b : “I intend to see a few of your dark color culotte in

cotton that she would like, just like this one.”

• Text c : “I am here to see some espadrill with a casual fit

that would suit me.”

• Text d : “Male.”

• Text e : “Can you show me some business type soft ma-

terial driving-shoes containing sole made out of leather

material that my buddy would like?”

From the attention results shown in Figure 5, we found that our

model could adaptively aggregate crucial attribute information to

enhance the utterance representation. For example, in the Text c, the

bold words “espadrill” and “casual” respectively indicate the user’s

“type” and “style” intentions on the target product. Intuitively, to

enhance the representation of this utterance, we should aggregate

the information related to “type” and “style” attributes. In the third

row of Figure 5, the words “style” and "type" are marked in the dark-

est blue, reflecting that these attributes attract the most attention.

These findings are consistent with our expectation, demonstrating

that our proposed module is capable of adaptively identifying the

useful attributes, hence, further verifying the effectiveness of our

multi-attribute attention module.

4.5.2 Visualization of Context Attention. To gain deeper insights

into our sparse GAT module, in this section, we visualized the

adjacent context of the 𝑁 -th node (i.e., the final question utterance

in the multimodal context), as demonstrated in Figure 6.

11Due to the large number of attribute values, we only show the attention coefficient
of each attribute.



Hi, how can I help you today?

I am keen on looking at some of your best running shoe of brooks brand that 
would suit me .

Sure. Just wait a few seconds while I scan through my catalog of items.

In the 5th image, built for the mild overpronator. moisture-managing element
mesh upper offers protection from various elements, while maintaining …

I don’t like the material in the 5th image. Can you show me some more?

For the 4th one, yepme presents these blue coloured running shoes, which are 
a perfect blend of style and comfort.

Do you think is the upper material rubber in the 3rd image?

Yes.

Show me more images of the 3rd product from some different orientations.

Sorry I couldn’t find any other orientations for this image.

I like the 1st running shoes. Show me something similar to it but in skechers
branded type.

Figure 6: Relational context visualization of the last utter-

ance node. The first column represents the order of each

utterance in the dialog. The second shows the sparse ad-

jacency relationship between the last utterance and other

ones, where 1 refers to the relevant relationship. The third

displays the corresponding content of each utterance, where

the blue and yellow boxes denote the responses of the user

and the agent, respectively.

From Figure 6, we found that the relational score of 𝑢1 is 0. It
makes sense since the greeting sentence from the agent is useless

in answering the user’s question (i.e., the last utterance). From

𝑢2 to 𝑢5, their relational values are all 1. This is because the user
gradually puts forward her/his intentions for the target product in

these utterances. In other words, these utterances involve valuable

information for question understanding. Although some textual

sentences in these utterance may be useless, such as “Sure. Just

wait a few seconds while I scan through my catalog of items.”,

their visual information is vital in response generation. For the

utterance 𝑢6 to 𝑢9, their relational scores are 0, reflecting they are

meaningless to the final response generation. This is consistent

with our expectation, since the user and the agent have a detailed

discussion about the third product in these utterances, rather than

the first product referred in the question utterance. By analyzing

the results shown in Figure 6, we can see that merely part of the

utterance context is effective for understanding the user’s question.

Therefore, simply encoding the whole utterance context holistically

may be not appropriate. This further justifies the necessity and

effectiveness of our proposed sparse GAT.

4.6 Qualitative Analysis

To qualitatively validate the effectiveness of our TREASURE model,

we displayed two typical cases in Figure 7. In addition, we also

displayed the results of the two best baselines. Based on these

retrieval results, we could see that our model could comprehend

the user intentions accurately. Specially, in Figure 7(a), compared

to UMD and MAGIC, TREASURE can deliver the most correct

images. More importantly, the top-10 results of our model are all

related to the “shorts”. This demonstrates the effectiveness of our

multi-attribute attention module, which effectively enforces the

Question: Can you show me a straight fit bermuda shorts that i would like?

UMD

MAGIC

TREASURE

(a) Case one

UMD

MAGIC

TREASURE

Question: I don’t like the upper material in the 2nd image. Can you show me some more?

Context Image: 

(b) Case two

Figure 7: Top-10 image response selection results of our

TREASURE and the baselines.

model to focus on the product attribute information. Moreover, in

Figure 7(b), our TREASURE not only selects the correct images

but also sorts them at the top positions. This reflects our model

could capture the effective information from the utterance context

to better understand user intentions for image response selection.

5 CONCLUSION AND FUTUREWORK

In this paper, we propose a relational graph-based context-aware

question understanding scheme for multimodal dialog system, re-

ferred to TREASURE. To be specific, to obtain the global represen-

tation for each utterance, we regard each utterance as a node in the

graph network to construct a relational graph, adaptively capturing

the crucial relational context information for each node. At the

same time, in order to simplify the complex multimodal context

relationships, we design a sparse adjacency relationship learning

method to make feature propagation between nodes more accurate

and faster. Besides, to enhance the local representation of each

node in the relational graph for better initialization, we propose

a multi-attribute attention mechanism to highlight the product-

related keywords in the textual information. Extensive experiments

show that our proposed TREASURE model is superior to existing

methods, demonstrating the effectiveness of our framework.

In the future, we will extend our work in two directions. First,

we will continue to work on complex relational context modeling,

aiming to seek a more efficient way to understand user intentions.

Second, we will explore the application of external knowledge,

especially the cross-modal knowledge.
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